National University of Singapore **Ph.D. Qualifying Examination** Computational Mathematics, August 2024 Duration: 3h

Part I: Scientific Computing

Question 1 [17 marks]

Consider the $n \times n$ matrix

$$A = \begin{pmatrix} 2 & -1 & & & -1 \\ -1 & 2 & -1 & & & \\ & -1 & \ddots & \ddots & & \\ & & \ddots & \ddots & -1 & \\ & & & -1 & 2 & -1 \\ -1 & & & & -1 & 2 \end{pmatrix}$$

- a) Show that for any vector $\mathbf{b} = (b_1, \dots, b_n)^T$ satisfying $b_1 + \dots + b_n = 0$, the linear system $A\mathbf{x} = \mathbf{b}$ has a one-dimensional solution space.
- b) Show that the Jacobi method converges for the linear system $A\mathbf{x} = \mathbf{b}$. Describe which solution in the solution space the Jacobi method converges to.

Question 2 [16 marks]

Define the following points

•
$$\mathbf{x}_1 = (0, 0)^T$$
,

- $\mathbf{x}_2 = (1, 0)^T$,
- $\mathbf{x}_3 = (2, 0)^T$,
- $\mathbf{x}_4 = (0, 1)^T$,
- $\mathbf{x}_5 = (1, 1)^T$,
- $\mathbf{x}_6 = (2, 1)^T$,
- $\mathbf{x}_7 = (0, 2)^T$,
- $\mathbf{x}_8 = (1, 2)^T$,
- $\mathbf{x}_9 = (2,2)^T$.

Let Ω_1 be the square with vertices \mathbf{x}_1 , \mathbf{x}_3 , \mathbf{x}_7 , and \mathbf{x}_9 . Let Ω_2 be the convex hull of \mathbf{x}_1 , \mathbf{x}_3 , \mathbf{x}_6 , \mathbf{x}_8 , and \mathbf{x}_9 .

a) Find polynomials p_1, \dots, p_9 such that $p_k(\mathbf{x}_j) = \delta_{jk}$ for all $j, k = 1, \dots, 9$, and

$$\int_{\Omega_1} u(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \sum_{k=1}^9 u(\mathbf{x}_k) \int_{\Omega_1} p_k(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

for all monomials $u(x,y) = x^m y^n$ with $0 \leq m \leq 2$ and $0 \leq n \leq 2$.

1 / 4

b) Find polynomials q_1, \dots, q_8 such that $q_k(\mathbf{x}_j) = \delta_{jk}$ for all $j, k = 1, \dots, 8$, and

$$\int_{\Omega_2} u(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \sum_{k=1}^8 u(\mathbf{x}_k) \int_{\Omega_1} q_k(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

for all monomials $u(x,y) = x^m y^n$ with $0 \le m \le 2$, $0 \le n \le 2$, and $m + n \le 3$.

Question 3 [16 marks]

Consider the Runge-Kutta method with the following Butcher's tableau:

$$\begin{array}{c|ccccc} 0 & 0 & 0 & 0 \\ c_1 & a_{21} & a_{22} & 0 \\ 1 & a_{31} & a_{32} & 0 \\ \hline & b_1 & b_2 & b_3 \end{array}$$

Find the values of a_{21} , a_{22} , a_{31} , a_{32} , c_1 , b_1 , b_2 , b_3 such that the corresponding Runge-Kutta method has convergence order 4.

Question 4 [16 marks]

Consider the one-dimensional convection-diffusion equation

$$\begin{split} &\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = \kappa \frac{\partial^2 u}{\partial x^2}, \qquad x \in \mathbb{R}, \quad t \in (0, +\infty), \\ &u(x, 0) = u_0(x), \qquad x \in \mathbb{R}, \end{split}$$

where a and κ are constants, and $\kappa > 0$. We discretize the equation on a uniform spatial grid $\{x_j\}_{j\in\mathbb{Z}}$, where $x_{j+1} - x_j = \Delta x$ for any j; and the time steps are given by $0 = t_0 < t_1 < t_2 < \cdots$. Let U_j^n be the numerical approximation of

$$\frac{1}{\Delta x} \int_{x_j - \Delta x/2}^{x_j + \Delta x/2} u(x, t_n) \, \mathrm{d}x.$$

a) Suppose the function v(x) satisfies the ordinary differential equation

$$av'(x) = \kappa v''(x),$$

 $v(x_j) = U_j, \quad v(x_{j+1}) = U_{j+1}.$

Find the value of $F(U_j, U_{j+1}) := av(x_j + \Delta x/2) - \kappa v'(x_j + \Delta x/2).$

b) Use Δt to denote the time step. Show that the numerical scheme

$$U_j^{n+1} = U_j^n - \frac{\Delta t}{\Delta x} [F(U_j^n, U_{j+1}^n) - F(U_{j-1}^n, U_j^n)]$$

is consistent with the convection-diffusion equation.

c) Write down the stability condition of this numerical scheme.

— Continued on next page —

Part II: Optimization

1. [10 marks] Let $f: S \to R$, where $S \subseteq R^n$ is a nonempty convex set. Let $f_S: S \to R$ denote the convex function such that $f_S(x) \leq f(x)$ for all $x \in S$; and if g is any other convex function for which $g(x) \leq f(x)$ for all $x \in S$, $f_S(x) \geq g(x)$ for all $x \in S$. Assume that the minima of f over S exist. Show that $\min\{f(x): x \in S\} = \min\{f_S(x): x \in S\}$, and that $X^* \subseteq X_S^*$, where

$$X^* = \{x^* \in S : f(x^*) \le f(x), \forall x \in S\}, \\ X^*_S = \{x^* \in S : f_S(x^*) \le f_S(x), \forall x \in S\}.$$

2. [15 marks] Consider the problem

$$\begin{array}{ll} \min & f(x) \\ s.t. & Ax \leq b. \end{array}$$

Suppose that \bar{x} is a feasible solution such that $A_1\bar{x} = b_1$ and $A_2\bar{x} < b_2$, where $A^T = (A_1^T, A_2^T)$ and $b^T = (b_1^T, b_2^T)$. Assuming the A_1 has full rank, the matrix P that projects any vector onto the nullspace of A_1 is given by

$$P = I - A_1^T (A_1 A_1^T)^{-1} A_1.$$

Let $\bar{d} = -P\nabla f(\bar{x})$.

- (a) Show that if $\bar{d} \neq 0$, it is is an improving feasible direction; that is, $\bar{x} + \lambda \bar{d}$ is feasible and $f(\bar{x} + \lambda \bar{d}) < f(\bar{x})$ for $\lambda > 0$ and sufficiently small.
- (b) Suppose that $\bar{d} = 0$ and that $u = -(A_1A_1^T)^{-1}A_1\nabla f(\bar{x}) \ge 0$. Show that \bar{x} is a KKT point.
- (c) Show that \overline{d} is of the form λd for some $\lambda > 0$, where \overline{d} is an optimal solution to the following problem:

$$\min \quad \nabla f(\bar{x})^T d \\ s.t. \quad A_1 d = 0 \\ \|d\|^2 \le 1.$$

3. [10 marks] Consider the problem

$$\min_{x \in \mathcal{I}} f(x)$$

$$s.t. \quad g_i(x) \le 0, \quad i = 1, \dots, m,$$

$$(1)$$

where the functions $f : \mathbb{R}^n \to \mathbb{R}$ and $g_i : \mathbb{R}^n \to \mathbb{R}$ are differentiable and convex. Let $h_1, \ldots, h_m : \mathbb{R} \to \mathbb{R}$ be differentiable nondecreasing convex functions. (i) Show that

$$\phi(x) = f(x) + \sum_{i=1}^{m} h_i(g_i(x))$$

is convex.

3 / 4

- (ii) Suppose \bar{x} minimizes ϕ . Let $\bar{\lambda}_i = h'_i(g_i(\bar{x}))$. Show that $\bar{\lambda} = (\bar{\lambda}_1, \dots, \bar{\lambda}_m)$ is a feasible solution to the Lagrangian dual of the problem (1).
- (iii) Find, from $\overline{\lambda}$, a lower bound on the optimal value of the problem (1), and justify your answer.

— End of Paper —