NATIONAL UNIVERSITY OF SINGAPORE

Qualifying Exam - Analysis

(January 2025)

Time allowed : 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your name and student number on the cover page of your solution.
- 2. This examination paper contains 5 questions and comprises 3 pages (including this cover page).
- 3. Answer **all** questions and justify your steps.
- 4. This is a **closed book** examination. No helpsheet is allowed.

Question 1 [30 marks]

Let $\{f_n\}$ be a sequence that is bounded both in $\mathcal{L}^2(\mathbb{R}^d)$ and $\mathcal{L}^\infty(\mathbb{R}^d)$. Suppose that $f_n \to f$ almost everywhere in \mathbb{R}^d for some $f \in \mathcal{L}^2(\mathbb{R}^d)$.

a) Show that $f_n \to f$ weakly in $\mathcal{L}^2(\mathbb{R}^d)$.

b) If we also assume $||f_n||_{\mathcal{L}^2(\mathbb{R}^d)} \to ||f||_{\mathcal{L}^2(\mathbb{R}^d)}$, show that $f_n \to f$ in $\mathcal{L}^2(\mathbb{R}^d)$.

c) If we do not assume $||f_n||_{\mathcal{L}^2(\mathbb{R}^d)} \to ||f||_{\mathcal{L}^2(\mathbb{R}^d)}$, do we always have $f_n \to f$ in $\mathcal{L}^2(\mathbb{R}^d)$?

If yes, prove the statement. Otherwise, find a counterexample.

Question 2 [10 marks]

Suppose that $f \in \mathcal{L}^1(X, \mu)$, where (X, μ) is a measure space. Given $\varepsilon > 0$, show that there is $\delta > 0$ such that

$$|\int_A f d\mu| < \varepsilon$$

for all measurable sets A with $\mu(A) < \delta$.

Question 3 [40 marks]

Let (X, d) be a metric space.

For $E \subset X$, we say that E has Property T if for any $\varepsilon > 0$, there is a finite collection $\{x_1, x_2, \ldots, x_n\} \subset E$ such that

$$E \subset \bigcup_{k=1,2,\ldots,n} B_{\varepsilon}(x_k).$$

Here $B_r(x)$ denotes the open ball with radius r centered at x.

a) If $f: X \to \mathbb{R}$ is uniformly continuous, and $E \subset X$ has Property T, show that f(E) has Property T in \mathbb{R} .

b) If $f : X \to \mathbb{R}$ is continuous, and $E \subset X$ has Property T, does f(E) necessarily have Property T? If yes, prove the statement. Otherwise, find a counterexample.

c) Suppose that $K \subset X$ is compact, show that K has Property T.

d) Suppose that $K \subset X$ has Property T and is complete, show that K is compact.

Question 4 [10 marks]

Suppose that $f : \mathbb{C} \to \mathbb{C}$ is a holomorphic function. If the real part of f is non-negative on \mathbb{C} , does f have to be constant? If yes, prove the statement. Otherwise, find a counterexample.

PAGE 3

Let $\{f_n\}$ be a sequence of holomorphic functions on the open unit ball $B_1 \subset \mathbb{C}$. Under the assumption

$$|f_n(z)| \le 1$$
 for all $z \in B_1$,

show that there is a subsequence $\{f_{n_k}\}$ which is uniformly convergent on any compact subset of B_1 .