Algebra Qualifying Exam January 2025

Please attempt all problems. Each problem is worth 10 points, except problems 6 and 9 which are each worth 15 points. The total possible score is 100 points.

Problems

- 1. Classify all groups of order 21.
- 2. Compute the Galois group of the polynomial $x^4 + 2$ over \mathbf{Q} , and draw the lattice of all subfields of its splitting field.
- 3. Compute the group $\operatorname{Ext}^1_{\mathbf{Z}}(\mathbf{Z}/6\mathbf{Z},\mathbf{Z}/15\mathbf{Z})$.
- 4. Precisely state the classification theorem for finitely generated modules over a PID.
- 5. Prove that if A is a Noetherian ring and M is a finitely generated A-module, then any A-submodule $N \subset M$ is finitely generated.
- 6. i. Give the precise definition of a Dedekind domain.
 - ii. Give the precise definition of an Artinian ring.
 - iii. Give the precise statement of the Hilbert basis theorem.
- 7. Determine the number of irreducible complex representations of the group A_4 , along with their dimensions.
- 8. Classify all abelian groups of order 200 up to isomorphism.
- 9. Give one example of each of the following:
 - i. A commutative ring with exactly three prime ideals.
 - ii. A Dedekind domain which is not a principal ideal domain.
 - iii. A commutative ring with infinitely many elements but exactly four invertible elements.