

MA4198 PROJECT PROPOSAL (PROJECT CUM SEMINAR GROUP)

SUPERVISOR'S INFO

Name:	Tran Chieu Minh
Email:	trancm@nus.edu.sg
Tel number:	98707034
Office location:	S17-07-06

PROJECT ID: PS2520-10

TITLE

When decision is possible

BRIEF DESCRIPTION OF PROJECT

Can one write a computer program that always outputs the correct **True/False** answer to any mathematical question? At first sight this seems plausible—after all, mathematics is often viewed as a perfectly logical discipline in which every statement must be either true or false. However, a landmark result of **Gödel**, known as the *Incompleteness Theorem*, shows that even when we restrict attention to statements purely about the natural numbers, no such program can theoretically exist. A later breakthrough in the resolution of **Hilbert's Tenth Problem** revealed an even stronger limitation: there is **no algorithm** that can decide whether an arbitrary Diophantine equation (say, with 17 variables) has an integer solution.

Despite these negative results, there are surprising and important areas of mathematics in which **decision is possible**. For example, it is known that there exists a computer algorithm that decides the truth of statements in **elementary Euclidean geometry**. More generally, certain mathematical theories are known to be **decidable**, meaning that there exists an algorithm which, given any statement in the language of the theory, determines whether it is true or false. These positive results rely on ideas from **model theory**, a branch of mathematical logic concerned with the relationship between formal theories and the mathematical structures they describe.

The aim of this project is to explore the concept of decidability in mathematics through accessible examples that illustrate when and why decision procedures exist. Students will study key ideas in a guided way and apply them to demonstrate decision in specific concrete contexts.

EXPECTATION/S

- Read and understand selected mathematical texts related to decidability and examples of decidable/undecidable theories.
- Gain familiarity with basic concepts from mathematical logic (at an introductory level, with guidance).
- Participate actively in weekly group discussions and short presentations.

HP-Proposal (PS) v0416 1/2

- Work independently on an individual topic within the general theme of the project.
- Produce a clear and well-structured written report (up to 30 pages) explaining the material and demonstrating understanding of key ideas.
- Present the main results of the chosen topic in an accessible manner to peers.
- Apply decision techniques to specific concrete mathematical situations, where appropriate.
- Develop skills in mathematical exposition rather than solving open research problems.

PREREQUISITE/S (at level 3000 or below, with at most one course at level 3000)

- Level-2000 modules (algebra/combinatorics background):
 - MA2101 Linear Algebra II
 - MA2202 / MA2202S Algebra I
 - MA2214 Combinatorics and Graphs I
- One among these two level-3000 module (recommended, but not required):
 - MA3201 Algebra II
 - MA3233 Combinatorics and Graphs II

READING REFERENCE/S

"An Invitation to Mathematical Logic" by David Marker