NATIONAL UNIVERSITY OF SINGAPORE, DEPARTMENT OF MATHEMATICS

Ph.D. Qualifying Examination Year 2025-2026 Semester I Computational Mathematics

Time allowed: 3 hours

Instructions to Candidates

- 1. Use A4 size paper and pen (blue or black ink) to write your answers.
- 2. Write down your student number clearly on the top left of every page of the answers.
- 3. Write on one side of the paper only. Start each question on a NEW page. Write the question number and page number on the top right corner of each page (e.g. Q1P1, Q1P2, ..., Q2P1, ...).
- 4. This examination paper comprises two parts: Part I contains THREE (3) questions and Part II contains THREE (3) questions. Answer ALL questions.
- 5. The total mark for this paper is ONE HUNDRED (100).
- 6. This is a CLOSED BOOK examination: you are allowed to bring a help sheet.
- 7. You may use any calculator. However, you should lay out systematically the various steps in the calculations

Part I: Scientific Computing

Question 1 [25 marks]

Given $A \in \mathbf{R}^{10 \times 10}$ with $||A||_2 = 1$. Compute

$$\|\begin{bmatrix} I & A \\ 0 & I \end{bmatrix}\|_2.$$

Question 2 [20 marks]

Find out $\psi(h, t_n)$ such that the order of the following numerical method

$$y_0 = 0.5$$
, $y_{n+1} = \psi(h, t_n) + [y_n - (t_n + 1)^2](1 + h + \frac{h^2}{2!} + \dots + \frac{h^k}{k!})$

applied to the initial value problem

$$y' = y - t^2 + 1, \quad t \ge 0,$$

 $y(0) = 0.5.$

is k.

Question 3 [20 marks]

Apply the third-order Taylor series method

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2}f'(x_n, y_n) + \frac{h^3}{6}f''(x_n, y_n), \quad n = 0, 1, 2, \dots,$$

$$y_0 = -1.$$

and the third-order Runge-Kutta method

$$\hat{y}_{n+1} = \hat{y}_n + \frac{1}{9}(2K_1 + 3K_2 + 4K_3), \ n = 0, 1, 2, \cdots,$$

 $\hat{y}_0 = -1,$

where

$$K_1 = hf(x_n, \hat{y}_n),$$

$$K_2 = hf(x_n + \frac{1}{2}h, \hat{y}_n + \frac{1}{2}K_1),$$

$$K_3 = hf(x_n + \frac{3}{4}h, \hat{y}_n + \frac{3}{4}K_2),$$

to the initial value problem

$$y' = y + x$$
, $y(0) = -1$.

Compute

$$(y_1 + y_2) - (\hat{y}_1 + \hat{y}_2)$$

with h = 0.001 and h = 0.002, respectively.

Part II: Optimization

Question 1 [8 marks]

Let $S = \{(-1,0), (1,0), (0,1)\}$ and denote by conv(S) the convex hull of S.

- 1. Rewrite x = (0, 0, 1/2) as a convex combination of the points in S.
- 2. Note that since conv(S) is polyhedral, it can be expressed as $conv(S) = \{x : Ax \leq b\}$ for a certain matrix A and vector b. Figure out A and b.

Question 2 [15 marks]

Let $f: \mathbf{R}^n \to \mathbf{R}$ be a differentiable function with L-Lipschitz continuous gradient, that is,

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$$
 for all $x, y \in \mathbf{R}^n$.

Assume that the infimum $f^* := \inf_x f(x) > -\infty$. Consider the inexact gradient descent method:

$$x^{k+1} = x^k - \alpha(\nabla f(x^k) + e^k),$$

where $e^k \in \mathbf{R}^n$ is an error term (e.g., due to approximation, or numerical precision), and $\alpha \in (0, 1/L]$ is a fixed step size. Answering the following questions:

1. Prove that

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|_2^2 + \frac{\alpha}{2} \|e^k\|_2^2$$

- 2. Suppose the error sequence satisfies $\sum_{k=1}^{\infty} \|e^k\|_2^2 < \infty$. Prove that if the iterates $\{x^k\}_k$ has an accumulated point \bar{x} , then it must satisfy $\nabla f(\bar{x}) = 0$.
- 3. Assume additionally that f is strongly convex. Show that

$$\lim_{k \to \infty} f(x^k) = f^*.$$

Question 3 [12 marks]

A Support Vector Machine (SVM) is a supervised learning model for binary classification. More specifically, an SVM seeks a hyperplane

$$H = \{ x \in \mathbf{R}^n : w^\top x + b = 0 \}$$

that classifies a point x according to $sign(w^{T}x + b)$, where

$$\operatorname{sign}(t) = \begin{cases} 1 & \text{if } t \ge 0 \\ -1 & \text{if } t < 0. \end{cases}$$

Given training data $\{(x^i, y_i)\}_{i=1}^m$ with $x^i \in \mathbf{R}^n$ and labels $y_i \in \{-1, 1\}$, the learning problem of finding (w, b) can be formulated as the following nonsmooth convex optimization problem

$$\min_{w,x} \sum_{i=1}^{m} \max\{0, 1 - y_i(w^{\top}x^i + b)\} + \lambda ||w||_2^2,$$
(1)

where λ is a fixed positive constant. Answer the following questions.

1. Show that the optimal solution of (1) can also be obtained by solving the constrained quadratic optimization problem:

$$\min_{w,\xi,b} \sum_{i=1}^{m} x_i + \lambda ||w||_2^2$$
s.t. $1 - y_i(w^{\top}x^i + b) \le \xi_i, \ \forall i = 1, ..., m$

$$\xi_i \ge 0 \ \forall i = 1, ..., m.$$
(2)

- 2. Write down the Karush-Kuhn-Tucker (KKT) conditions for (2).
- 3. Derive the dual problem of (2).
- 4. Suppose $\{x^i\}_{i=1}^m$ are not directly available, but we have access to the Kernel matrix K where the (i,j)-th entry of K is given by the inner product $K_{ij} = \langle x^i, x^j \rangle$. We aim to do prediction for a new data point x^0 where all the inner products $\langle x^i, x^0 \rangle \ \forall i = 1, \ldots, m$ are assumed to be known. Explain how this process can be done using the dual representation.