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INSTRUCTIONS TO CANDIDATES

1. Please write your matriculation/student number only. Do not write your name.

2. Including this page, this examination paper comprises 5 printed pages.

3. At the top right corner of every page of your answer script, write the question and page

numbers(eg. Q1 P1, Q1 P2, Q2 P1,. . . ).

4. This examination contains EIGHT (8) questions. Answer ALL questions. Properly

justify your answers.

5. There is a total of ONE HUNDRED (100) points. The points for each question are

indicated at the beginning of the question.

6. Please start each part of a question (i.e., (a), (b), etc.) on a new page.

7. This is a CLOSED BOOK examination. The use of a double-sided A4-size cheat-sheet

is allowed. No electronic device (such as calculator, tablet, laptop or phone) is allowed.

You need to have your reference materials in hard copy with you.

8. A list containing information on the probability density / mass function, mean, variance

and moment generating functions of some common distributions has been provided at

the end of this exam paper for possible consultation.
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Q 1 [10 points]

Consider two independent simple symmetric random walks {Xn}n≥0 and {Yn}n≥0 on

the integer lattice with initial conditions X0 = 0 and Y0 = a > 0 respectively. Define

the stopping time τ by:

τ = inf {n ≥ 0 : Xn = Yn}

(a) Show that the difference Yn −Xn is itself a symmetric random walk starting at a.

(b) Using part (a), compute the probability that the random walks ever meet, i.e.

P(τ < ∞).

(c) Calculate the expected value E[τ ] as a function of a.

Q 2 [10 points]

Let {Xk}k≥1 be a sequence of i.i.d. exponential random variables of parameter 1, i.e.

P[X1 > x] = e−x, for all x > 0. Let Mn = max{X1, . . . , Xn} be the running maximum

of the family of random variables {Xk}k≥1.

(a) Show that

lim sup
n

Xn

log n
≤ 1 a.s.

and that

lim
n→∞

Mn

log n
≤ 1.

(b) Define the random variable Gn = Mn − log n. Show that Gn converges weakly to

a random variable G. Moreover find the cumulative distribution function of G.

Q 3 [15 points]

For a natural number n ≥ 1, consider Sn to be the set of permutations of n elements

{1, . . . , n} and equip Sn with the uniform probability measure

(a) A fixed point of a permutation π = (π1, . . . , πn) is a value i ∈ {1, . . . , n} such that

πi = i and we define the function F (π) as

F (π) = number of fixed points in π.

Compute the expectation E[F (π)].

(b) A transposition of a permutation π = (π1, . . . , πn) is a pair of different values

i, j ∈ {1, . . . , n} such that πi = j and πj = i. Define the function

T (π) = number of transpositions in π.

Compute the expectation E[T (π)].
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Q 4 [15 points]

Let β be a positive random variable such that E(β) and E(β2) are both well defined.

Let B = {bi}i≥0 be the point process constructed setting b0 = 0 and such that the gaps

{bi+i − bi}i≥0 are i.i.d. random variables with b1 − b0 ∼ β. For any T > 0 define

N(T ) = max{n : bn < T}.

(a) Prove that the random variable N(T )
T converges almost surely and determine its

limit.

(b) Let pT ∼ Unif(0, T ) be a point sampled uniformly at random in the interval (0, T )

and define the random variable

WT = inf{t > 0 : pT + t ∈ B},

that is, the gap between the point pT and the nearest point in B to its right.

Compute the limit

lim
T→∞

E[WT ].

Q 5 [Reducing elastic net to lasso] [10 points]

Define

J1(w) = ∥y −Xw∥2 + λ2∥w∥22 + λ1∥w∥1

and

J2(w) = ∥ỹ − X̃w∥2 + cλ1∥w∥1

where ∥w∥2 = ∥w∥22 =
∑

iw
2
i is the squared 2-norm, ∥w∥1 =

∑
i |wi| is the 1-norm,

c = (1 + λ2)
− 1

2 , and

X̃ = c

(
X√
λ2Id

)
, ỹ =

(
y

0d×1

)
Show

argmin J1(w) = c(argminJ2(w))

i.e.

J1(cw) = J2(w)

and hence that one can solve an elastic net problem using a lasso solver on modified

data.
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Q 6 [Reward modification] [15 points] A key technique for solving sequential decision prob-

lems is the modification of reward functions that leaves the optimal policy unchanged

while improving sample efficiency or convergence rates. This problem looks at simple

ways of modifying rewards and understanding how these modifications affect the optimal

policy.

Consider two Markov decision processes M
.
= (X,A, p, r) and M ′ .

= (X,A, p, r′) where

the reward function r is modified to obtain r′, and the rewards are bounded and dis-

counted by the discount factor γ ∈ [0, 1). Let π⋆
M be the optimal policy for M .

(a) (5 points) Suppose r′(x) = αr(x), where α > 0. Show that the optimal policy π⋆

of M is also an optimal policy of M ′.

(b) (5 points) Given a modification of the form r′(x) = r(x) + c, where c > 0 is a

constant scalar, show that the optimal policy π⋆
M can be different from π⋆

M ′ .

(c) (5 points) Another way of modifying the reward function is through reward shaping

where one supplies additional rewards to the agent to guide the learning process.

When one has no knowledge of the underlying transition dynamics p, a commonly

used transformation is

r′(x, x′) = r(x, x′) + f(x, x′)

where f is a potential-based shaping function defined as

f(x, x′)
.
= γϕ(x′)− ϕ(x), ϕ : X → R.

Show that the optimal policy remains unchanged under this definition of f .

Q 7 [High-dimensional mapping] [15 points] Let Φ : X → H be a feature mapping

such that the dimension N of H is very large and let K : X ×X → R be a positive

semi-definite (PDS) kernel defined by

K(x, x′) = Ei∼D
[
[Φ(x)]i[Φ(x

′)]i
]
, (1)

where [Φ(x)]i is the ith component of Φ(x) (and similarly for Φ(x′)) and where D
is a distribution over the indices i. We shall assume that |[Φ(x)]i| ≤ R for all x ∈ X
and i ∈ [N ]. Suppose that the only method available to compute K(x, x′) involved

direct computation of the inner product in (1), which would require O(N) time.

Alternatively, an approximation can be computed based on random selection of a

subset I of the N components of Φ(x) and Φ(x′) according to D, that is:

K ′(x, x′) =
1

n

∑
i∈I

D(i)[Φ(x)]i[Φ(x
′)]i,

where |I| = n.

(a) (10 points) Fix x and x′ in X . Prove that

PI∼Dn

[∣∣K(x, x′)−K ′(x, x′)
∣∣ > ϵ

]
≤ 2e−

nϵ2

2R2 . (0.1)
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(b) (5 points) Let K and K′ be the kernel matrices associated to K and K ′. Show

that for any ϵ, δ > 0, for n > R2

ϵ2
log m(m+1)

δ , with probability at least 1− δ,

|K′
ij −Kij | ≤ ϵ for all i, j ∈ [m].

Q 8 [Nyström method] [10 points] Define the following block representation of a kernel

matrix:

K =

[
W K⊤

21

K21 K22

]
and C =

[
W
K21

]
.

The Nyström method uses W ∈ Rl×l and C ∈ Rm×l to generate the approximation

K̃ = CW†C⊤ ≈ K.

If rank(K) = rank(W) = r ≪ m, show that K̃ = K.

Note: this statement holds whenever rank(K) = rank(W), but is of interest mainly

in the low-rank setting.

—– End of Paper —–
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• Bernoulli (p) :

P(X = i) =

{
p if i = 1

1− p if i = 0.

E[X] = p, Var[X] = p(1− p), E[etX ] = (1− p) + pet.

• Binomial (n,p):

P(X = i) =
(
n
i

)
pi(1− p)n−i; 0 ≤ i ≤ n.

E[X] = np, Var[X] = np(1− p), E[etX ] = [(1− p) + pet]n.

• Geometric (p) :

P(X = i) = (1− p)i−1p; i ≥ 1.

E[X] = 1
p , Var[X] = 1−p

p2
, E[etX ] = pet

1−(1−p)et for t < − log(1− p).

• Poisson (λ):

P(X = i) = e−λ λi

i! ; i ≥ 1.

E[X] = λ, Var[X] = λ, E[etX ] = exp(λ(et − 1)).

• Uniform (a,b) :

f(x) =

{
1

b−a if a ≤ x ≤ b

0 otherwise .

E[X] = (a+ b)/2, Var[X] = (b−a)2

12 , E[etX ] = etb−eta

t(b−a) if t ̸= 0.

• Uniform on the square (a, b)× (c, d) :

f(x, y) =

{
1

(b−a)(d−c) if a ≤ x ≤ b, c ≤ y ≤ d

0 otherwise .

• Normal / Gaussian (N(µ, σ2)):

f(x) = 1√
2πσ

exp(− (x−µ)2

2σ2 ).

E[X] = µ, Var[X] = σ2, E[etX ] = exp(µt+ 1
2σ

2t2).

• Exponential (λ):

f(x) =

{
λ exp(−λx) if x > 0

0 otherwise.

E[X] = 1/λ, Var[X] = 1/λ2, E[etX ] = λ
λ−t for t < λ.
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